1,422 research outputs found

    Continuity, Coordination, and Transitions of Care for Patients with Serious and Advanced Illness: A Systematic Review of Interventions

    Full text link
    Objectives: Continuity, coordination, and transitions of care are key to high-quality medical care for patients with serious and advanced illness. We conducted a systematic review to evaluate the impact of interventions targeting these areas in this population. Methods: We searched PubMed, CINAHL, PsycINFO, Cochrane, and DARE from 2000 through 2011. We included prospective controlled studies targeting continuity, coordination, and transitions for patients with advanced illness that reported patient centered outcomes. Of 13,014 citations, 23 studies met inclusion criteria. Two investigators extracted and checked data on population, interventions, methods, outcomes, and methodological quality. Results: Four of the six studies evaluating patient satisfaction (67%) and four of the six studies evaluating caregiver satisfaction (67%) showed statistically significant improvements in these outcomes in the intervention compared to the control group. Only three of the nine studies (33%) measuring quality of life and five of the 16 (31%) measuring health care utilization showed improvement. Results were similar across different types of interventions. Conclusions: Many studies were limited by methodologic issues such as use of measurement tools not developed for patients with advanced disease and small sample size. Interventions and outcomes were too heterogeneous for meta-analysis. We found moderate evidence that interventions targeting continuity, coordination, and transitions in patients with advanced and serious illness improve patient and caregiver satisfaction, but low evidence for other outcomes. Further research is needed on how to target these domains for outcomes such as health care utilization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140114/1/jpm.2012.0317.pd

    Systemic versus localized coagulation activation contributing to organ failure in critically ill patients

    Get PDF
    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may not only be relevant for vascular atherothrombotic disease in general but has in certain clinical settings considerable consequences, for example in the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Pro-inflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on an interleukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by physiological anticoagulant mechanisms and endogenous fibrinolysis. Interestingly, apart from the overall systemic responses, a differential local response in various vascular beds related to specific organs may occur

    Overstating the evidence - double counting in meta-analysis and related problems

    Get PDF
    Background: The problem of missing studies in meta-analysis has received much attention. Less attention has been paid to the more serious problem of double counting of evidence. Methods: Various problems in overstating the precision of results from meta-analyses are described and illustrated with examples, including papers from leading medical journals. These problems include, but are not limited to, simple double-counting of the same studies, double counting of some aspects of the studies, inappropriate imputation of results, and assigning spurious precision to individual studies. Results: Some suggestions are made as to how the quality and reliability of meta-analysis can be improved. It is proposed that the key to quality in meta-analysis lies in the results being transparent and checkable. Conclusions: Existing quality check lists for meta-analysis do little to encourage an appropriate attitude to combining evidence and to statistical analysis. Journals and other relevant organisations should encourage authors to make data available and make methods explicit. They should also act promptly to withdraw meta-analyses when mistakes are found

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    On the use of simulation as a Big Data semantic validator for supply chain management

    Get PDF
    Simulation stands out as an appropriate method for the Supply Chain Management (SCM) field. Nevertheless, to produce accurate simulations of Supply Chains (SCs), several business processes must be considered. Thus, when using real data in these simulation models, Big Data concepts and technologies become necessary, as the involved data sources generate data at increasing volume, velocity and variety, in what is known as a Big Data context. While developing such solution, several data issues were found, with simulation proving to be more efficient than traditional data profiling techniques in identifying them. Thus, this paper proposes the use of simulation as a semantic validator of the data, proposed a classification for such issues and quantified their impact in the volume of data used in the final achieved solution. This paper concluded that, while SC simulations using Big Data concepts and technologies are within the grasp of organizations, their data models still require considerable improvements, in order to produce perfect mimics of their SCs. In fact, it was also found that simulation can help in identifying and bypassing some of these issues.This work has been supported by FCT (Fundacao para a Ciencia e Tecnologia) within the Project Scope: UID/CEC/00319/2019 and by the Doctoral scholarship PDE/BDE/114566/2016 funded by FCT, the Portuguese Ministry of Science, Technology and Higher Education, through national funds, and co-financed by the European Social Fund (ESF) through the Operational Programme for Human Capital (POCH)

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing [version 2; peer review: 2 approved]

    Get PDF
    Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Discovery and saturation analysis of cancer genes across 21 tumour types

    Get PDF
    Although a few cancer genes are mutated in a high proportion of tumours of a given type (>20%), most are mutated at intermediate frequencies (2–20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600–5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    <p>Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.</p> <p>Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.</p> <p>Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort.</p> <p>Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.</p&gt
    corecore